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Abstract. Transport of a Brownian particle moving in a periodic potential is investigated in the presence
of the two correlated noises. We present the analytical expression of the net current at quasi-steady state
limit. The competitions among the asymmetric parameter of the potential, the noise correlation parameter
and the temporal asymmetric parameter of driving force lead to the phenomena like current reversal. The
competitions of different driving factors are necessary for current reversal.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 02.50.Ey
Stochastic processes – 87.10.+e General theory and mathematical aspects

Introduction

Transport phenomena play a crucial role in many pro-
cesses from physical, biological to social systems. There
has been an increasing interest in transport properties of
nonlinear systems which can extract usable work from
unbiased nonequilibrium fluctuations [1–4]. This comes
from the desire of understanding molecular motors [5],
nanoscale friction [6], surface smoothening [7], coupled
Josephson junctions [8], optical ratchets and directed mo-
tion of laser cooled atoms [9], and mass separation and
trapping schemes at microscale [10].

The focus of research has been on the noise-induced
unidirectional motion over the last decade. A ratchet
system is generally defined as a system that is able to
transport particles in a periodic structure with nonzero
macroscopic velocity in the absence of macroscopic force
on average. In these systems, directed Brownian motion
of particles is generated by nonequilibrium noise in the
absence of any net macroscopic forces and potential gra-
dients [4]. Typical examples are rocking ratchets [4,11],
flashing ratchets [12], diffusion ratchets [13], correlation
ratchets [4,14]. In all these studies, the potential is taken
to be asymmetric in space. It has also been shown that a
unidirectional current can also appear for spatially sym-
metric potentials if there exits an external random force
either asymmetric [2] or spatially-dependent [3].

The current reversal is very important for separation
of micro-particles [15]. It is also of interest in biology. Mo-
tions of macromolecules are probably responsible for the
vesicle transport inside eukaryotic cells. A typical example
is the motion of proteins along a microtubule, modelled
usually by a ratchet [29]. It is well known that the two
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typical proteins, kinesins and dyneins, move along tubu-
lin filaments in opposite directions.

The current reversal in ratchet systems can be engen-
dered by varying system parameters [16–28]. The current
can be reversed, for example, by a noise of Gaussian force
with non-white power spectrum in present of stationary
periodic potential [19]. The current reversal can also be ob-
tained in two-state ratchets if the long arm is kinked [20].
Bier and Astumian [21] have also found the current re-
versal in a fluctuating three-state ratchet. In the presence
of a kangaroo process as the driving force, the current
reversal can be triggered by varying the noise flatness,
the ratio of the fourth moment to the square of the sec-
ond moment [22]. The current reversal can be induced by
both an additive Gaussian white and an additive Ornstein-
Uhlenbeck noise in a correlation ratchet [23]. The cur-
rent reversal also appear in forced inhomogeneous ratch-
ets [17,18]. The current reversals are also frequent in the
absence of noise (deterministic ratchets) [1,24].

The present work studies the current reversal of a two-
noise ratchet in the presence of an asymmetric unbiased
external force. When positive driving factors compete with
negative ones, the current may reverse its direction. The
competition between the different driving factors is neces-
sary for the current reversal. Our emphasis is on finding
conditions of generating current reversal. This is achieved
by using a quasi-steady state limit to solve the Fokker-
Planck equation.

Current of the two-noise ratchet

Consider a Brownian particle moving in a sawtooth
potential with the correlated noises. The particle
motion satisfies the dimensionless Langevin equation
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Fig. 1. Potential and Driving force: (a)potential U0(x) = U0(x + L); U0(x) is a piecewise linear and periodic potential; the
period of the potential is L = L1 + L2; ∆ = �L1 − �L2; Q is the height of the potential. (b) Driving force F (t) which preserved
the zero mean 〈F (t)〉 = 0; F (t + τ ) = F (t); where the temporal asymmetry is given by the parameter ε.

motion [18,30,31]

dx

dt
= −∂U0(x)

∂x
+ F (t) + ξ2(t)F (t) + ξ1(t), (1)

where x stands for the position of Brownian particle. The
geometry of potential U0(x) = U0(x + L) is displayed in
Figure 1a and U0(x) within the interval 0 ≤ x ≤ L is
described by

U0(x) =






2Q

L + ∆
x, 0 < x ≤ (L + ∆)/2;

− 2Q

L − ∆
(x − L), (L + ∆)/2 < x ≤ L,

(2)

where L is the period of the potential, Q the barrier height
of the potential, ∆ the asymmetric parameter of the po-
tential.

F (t) is an external fluctuation [18] (Fig. 1b)

F (t + τ) = F (t),
∫ τ

0

F (t)dt = 0, (3)

F (t) =
{

1+ε
1−εF0, nτ ≤ t < nτ + 1

2τ(1 − ε);
−F0, nτ + 1

2τ(1 − ε) < t ≤ (n + 1)τ,
(4)

where τ is its period, ε the temporal asymmetric param-
eter of the driving force.

ξ1(t), ξ2(t) are white noises with zero mean. They
are usually treated as independent random variables in
most of previous investigations. However, here we assume
that the two noises are correlated with each other and
the correlations between the two noises have the following
form [18,31]

〈ξi(t)ξj(t
′
)〉 = 2Ci,jkB

√
TiTjδ(t− t

′
), i = 1, 2; j = 1, 2,

(5)
where Ci,j = λ for i �= j and Ci,j = 1 for i = j, λ denotes
the correlation parameter between ξ1(t) and ξ2(t), and
−1 ≤ λ ≤ 1. kB is Boltzman constant and equal to 1 for
simplicity, T1, T2 absolute temperatures.

The probability density satisfies the associated Fokker-
Planck equation [30]

∂P (x, t)
∂t

=
∂

∂x
[U

′
(x, t)+G(F (t), λ)

∂

∂x
]P (x, t)=−∂j(x, t)

∂x
,

(6)

where the prime stands for the derivative with respect
to the space variable x. The probability current density
j(x, t) is given by

j(x, t) = −U
′
(x, t)P (x, t) − G(F (t), λ)

dP (x, t)
dx

, (7)

U(x, t) = U0(x) − F (t)x, (8)

G(F (t), λ) = T2F (t)2 + 2λF (t)
√

T1T2 + T1, (9)

P (x, t) is the probability density for the particle at posi-
tion x and at time t. It satisfies the normalization condi-
tion and the periodicity condition,

P (x, t) = P (x + L, t), (10)
∫ L

0

P (x, t)dx = 1. (11)

If F (t) changes very slowly with respect to t, namely, its
period is longer than any other time scale of the system,
there exists a quasi-steady state. In this case, by follow-
ing the method in [18,30,31], we can obtain the current
j(F (t)) from equations (7–11),

j(F (t)) =
G(F (t), λ){1 − exp[ −LF (t)

G(F (t),λ) ]}
∫ L

0 eφ(x)dx
∫ x+L

x e−φ(x)dy
, (12)

where φ(x, t) is generalized potential

φ(x, t) = − U(x, t)
G(F (t), λ)

· (13)

After substituting U0(x) and G(F (t), λ), we have

j(F (t))=

P 2
2 sinh[LF (t)/2G(F (t), λ)]

G(F (t), λ)(L/Q)2P3−(L/Q)P1P2 sinh[LF (t)/2G(F (t), λ)]
,

(14)
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Fig. 2. Current J versus correlation parameter λ between the
two thermal noises at Q = 1, L = 1, F0 = 0.5, T1 = 0.5,
T2 = 0.5, ε = 0 and ∆ = 0.

where

P1 =∆ +
(L2 − ∆2)F (t)

4Q
, (15)

P2 =
[

1 − F (t)∆
2Q

]2

−
[
LF (t)
2Q

]2

, (16)

P3 = cosh
[
Q − F (t)∆/2
G(F (t), λ)

]

− cosh
[

LF (t)
2G(F, λ)

]

. (17)

The average current is

J =
1
τ

∫ τ

0

j(F (t))dt. (18)

For the external force F (t) shown in Figure 1b, we can
have

J =
1
2

[

(1 − ε)j
(

(1 + ε)F0

1 − ε

)

+ (1 + ε)j(−F0)
]

. (19)

Results and discussion

Figure 2 shows the current J as a function of the noise
correlation parameter λ at ∆ = 0 and ε = 0. The current
is negative for λ < 0, zero at λ = 0 and positive for λ > 0.
Therefore, we can have the current reversal by changing
the sign of λ, the noise correlation parameter.

Figure 3 shows the current J versus the asymmetric
parameter ∆ of the potential at λ = 0 and ε = 0. Similarly,
the current is negative for ∆ > 0, zero at ∆ = 0 and
positive for ∆ > 0. Therefore, the current can reverse its
direction by changing the sign of ∆.

Figure 4a show the current J as a function of the nega-
tive temporal asymmetric parameter ε of the driving force
at λ = 0 and ∆ = 0. When ε = −1.0, namely, no exter-
nal force acting on the system, no current occurs. When
ε = 0, there is no any driving factors at λ = 0 and ∆ = 0,

Fig. 3. Current J versus asymmetric parameter ∆ of the po-
tential at Q = 1, L = 1, F0 = 0.5, T1 = 0.5, T2 = 0, λ = 0 and
ε = 0.

therefore, no current occurs, also. When −1.0 < ε < 0, the
current is negative and has a minimum value. The current
J versus the positive temporal asymmetric parameter ε is
shown in Figure 4b. The current J is positive for ε > 0
and increases with ε. When the sign of ε is changed, the
current reversal can occur. For the noise correlation pa-
rameter λ and the asymmetric parameter of the potential,
the temporal asymmetric parameter ε is another way of
inducing a net current.

The current J as a function of T1 is shown in Figure 5
for different combinations of ε and ∆ at T2 = 0 and λ = 0.
When λ = 0 and T2 = 0, the correlation ratchet reduces
to a rocking ratchet. When T1 → 0, J tends to zero for
all values of ε and ∆. Therefore, the particle can not pass
the barrier and there is no current. When T1 → +∞ so
that the thermal noise is very large, the ratchet effect dis-
appears and J → 0, also. There exists some values of T1

at which the current J takes its maximum or minimum
value. When ε is negative (ε = −0.4), the current may re-
verse its direction as increasing T1. Therefore, there exists
current reversal for ε∆ < 0 at λ = 0. However, ε∆ < 0
is not sufficient for current reversal. For example, the cur-
rent is always negative for ε = −0.4, ∆ = 0.2 and negative
for ε = −0.4, ∆ = 0.3.

In Figure 6, we plot the current J as a function of
temperature T1 for different combinations of ε and λ at
∆ = 0 (symmetric potential). When T1 → 0, because of
existing of the other thermal noise T2, the current tends
to a negative value, instead of zero, at ε = −0.4, which is
different from Figure 5. When ε is negative (ε = −0.4),
the current reversal occurs for positive λ (0.4, 0.35, 0.3).
Hence, the current may reverse its direction for ελ < 0.

Figure 7 shows the current J versus the temperature
T1 for different combinations of ∆ and λ at ε = 0. When
T1 → 0, the current tends to a positive value for ∆ = 0.8.
There exits current reversal for positive ∆ and negative λ.
The current may reverse its direction for λ∆ < 0.

Figure 8 shows the current as a function of T1 for dif-
ferent combinations of ∆, λ and ε. From the figure, when
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Fig. 4. Current J versus temporal asymmetric parameter ε of the driving force at Q = 1, L = 1, F0 = 0.5, T1 = 0.5, T2 = 0,
λ = 0 and ∆ = 0: (a) ε is negative. (b) ε is positive.

Fig. 5. Current J versus temperature T1 for different combi-
nations of ε and ∆ at Q = 1, L = 1, F0 = 0.5, T2 = 0 and
λ = 0.

Fig. 6. Current J versus temperature T1 for different combi-
nations of ε and λ at Q = 1, L = 1, F0 = 0.5, T2 = 0.5 and
∆ = 0.

a negative driving factor meets the two positive driving
factors, or a positive driving factor meets the two nega-
tive driving factors, the current reversal may occur. Hence,
the current may reverse its direction as increasing temper-
ature T1 for ∆ελ < 0.

Fig. 7. Current J versus temperature T1 for different combi-
nations of ∆ and λ at Q = 1, L = 1, F0 = 0.5, T2 = 0.5 and
ε = 0.

Fig. 8. Current J versus temperature T1 for different combi-
nations of ε, ∆ and λ at Q = 1, L = 1, F0 = 0.5 and T2 = 0.5.

From Figure 2 to Figure 8, when the system controlled
by two driving factors (Figs. 5–7), the current may re-
verse its direction for the two competitive driving factors
(∆ε < 0, ∆λ < 0, λε < 0). When the system is under
three driving factors (Fig. 8), the current reversal may
occur for at least two opposite driving factors.
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Concluding remarks

We study the transport of a Brownian particle moving in a
periodic potential in the presence of an asymmetric unbi-
ased external force and two correlated noises. We obtained
the current analytically in a quasi-steady state limit. It is
found that the asymmetric parameter ∆ of the potential,
the noise correlation parameter λ and the temporal asym-
metric parameter ε of the external unbiased force are the
three pivotal factors for obtaining a net current. For the
three positive or the three negative driving factors, current
cannot reverse its direction. The current reversal cannot
occur either if there is only one driving factor. Two or
three opposite driving factors are necessary for current
reversal.

Our ratchet model is proposed in an attempt of de-
scribing molecular motor in biology systems. The poten-
tial describes the track and the structure of the motor.
The external force depicts the stroke force due to ATP
hydrolyzing. Usually, due to the fluctuation of the condi-
tion, there are two noises in the system. One is the fluc-
tuation of the stroke force, multiplicative noise. The other
is the inherent fluctuation of the system, additive noise.
Because the two noises may have the common origin, we
assume that they are correlated with each other. For such
a ratchet system, there exist three factors for obtaining a
net current: space asymmetry in the potential, temporal
asymmetry in the external force and noise correlation. For
a symmetric external force and single noise ratchet, asym-
metry in potential is sufficient for a net transport [11]. For
a symmetric potential and single noise ratchet, asymmetry
in the external force can induce a net current [18]. Noise
correlation can break the symmetry of the generalized po-
tential and induce a net transport even if the potential and
the external force are symmetric [31]. When these factors
meet, the competitions between them may induce current
reversals.

The current reversal is very important in new parti-
cle separation devices such as electrophoretic separation
of micro-particles [15]. To date, the feasibility of parti-
cle transport by man-made devices has been experimen-
tally demonstrated for several ratchet types. Beyond the
separation methods, the phenomena of current reversals
may be of interest in biology [32], e.g., when consider-
ing the motion of macro- molecules. Myosin moves along
actin filaments towards their plus extremity, and kinesins
and dyneins move along tubulin filaments towards their
plus and minus extremities respectively. It is well known
that the two current reversals effect allows one pair of mo-
tor proteins to move simultaneously in opposite directions
along the microtubule inside the eukaryotic cells. Several
biological molecular motors, for instance kinesin and non-
claret disjunctional, belonging to the same superfamily
of motor proteins move towards opposite ends of the mi-
crotubules. The ratchet mechanism was used for obtain-
ing efficient separation methods of nanoscale objects, e.g.,
DNA molecules, proteins, viruses, cells, etc. These can be
explained by the current reversal.

To summarize, it is remarkable that the interplay
among the three different driving factors generates a rich

variety of cooperation effects such as current reversal. We
expect that our analysis should be applicable for particle
separation devices, control of molecular motors and other
microscale phenomena.
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